
NORRIS Framework

Developer Manual
Document information
Version 1.0.0

Editors Sartor Michele
Reviewers Cardin Andrea

Accountable Merlo Gianluca
Use External

Distribution list FlameTech Inc.
Prof. Vardanega Tullio
Prof. Cardin Riccardo
CoffeeStrap

Description
Developer manual for Norris framework

Version Modification Author Role Date Status

1.0.0 Document approved Merlo
Gianluca

Project
Manager

2015/06/05 Approved

0.1.0 Document reviewed Cardin
Andrea Reviewer 2015/06/04 Reviewed

0.0.5 Translated appendix A
and B

Sartor
Michele Administrator 2015/06/04 Processing

0.0.4 Translated section 5 Sartor
Michele Administrator 2015/06/03 Processing

0.0.3 Translated section 3 and
4

Sartor
Michele Administrator 2015/06/02 Processing

0.0.2 Translated section 1 and
2

Sartor
Michele Administrator 2015/06/02 Processing

0.0.1 Beginning translation Sartor
Michele Administrator 2015/06/02 Processing

Contents
1 Introduction 1

1.1 Document purpose . 1
1.2 Product purpose . 1

2 System requirements 2

3 Installation 3
3.1 FrameworkG installation . 3

4 Project configuration 4
4.1 Required libraries and instantiation . 4
4.2 Mount . 4

4.2.1 PageRouter(page) . 5
4.3 Project example . 5

5 Software development kit 7
5.1 General description . 7
5.2 Page . 7

5.2.1 Page(title, options) . 7
5.2.2 getPageInfo() . 7
5.2.3 addGraph(graph) . 7

5.3 Line Chart . 7
5.3.1 LineChart(title, xAxisName, yAxisName, labels, data, options) . . 8
5.3.2 getChartInfo() . 9
5.3.3 updateInPlace(label, set, newValue) 9
5.3.4 updateStream(newLabel, newValue) 9

5.4 Bar Chart . 9
5.4.1 BarChart(title, xAxisName, yAxisName, labels, data, options) . . . 10
5.4.2 getChartInfo() . 11
5.4.3 updateInPlace(label, set, newValue) 11

5.5 Map Chart . 11
5.5.1 MapChart(title, paths, points, centerLatitude, centerLongitude, op-

tions) . 11
5.5.2 getChartInfo() . 13
5.5.3 updateInPlace(point, latitude, longitude) 13
5.5.4 updateMovie(newPositions) . 13

5.6 Table . 14
5.6.1 Table(title, headers, data, options) 14
5.6.2 getChartInfo() . 17
5.6.3 updateInPlace(row, column, newValue, options) 17
5.6.4 updateStream(data, options) . 17

A Glossary 19

B Contacts 23

I

1 Introduction

1 Introduction

1.1 Document purpose

This document represents the developer manual for the Norris frameworkG; it ex-
poses all the features that the product offers and explains the correct ways to use
the frameworkG.

1.2 Product purpose

The product purpose is the production of a Node.jsG frameworkG which is compatible
with the standard use of ExpressG version 4.x middlewaresG.
This frameworkG will be used to rapidly create charts and update them in real time.

Developer Manual
ver. 1.0.0

pag. 1 of 23

2 System requirements

2 System requirements
Norris frameworkG is compatible with every operating system that supports Node.jsG

and npm.
Requirements:

• Node.jsG version 0.12.2 or later;

• npmG version 2.7.4 or later.

The installation requires a command-line interface for executing npm and an internet
connection. Additional dependencies will be automatically resolved when installing the
frameworkG.
The supported browsers are:

• Chrome version 38.0.X and later;

• Firefox version 32.X and later.

Developer Manual
ver. 1.0.0

pag. 2 of 23

3 Installation

3 Installation

3.1 FrameworkG installation

Norris frameworkG can be installed with the following command line:

npm install norris-rtbi

In order to create a new project, it is also required to install ExpressG and socket.ioG

with the following command lines:

npm install express
npm install socket.io

Also, the front-end part of Norris frameworkG requires Bower to be installed globally
on the system.
Therefore, if Bower is not installed already, the following command line is also required:

npm install -g bower

Additional dependencies will be automatically resolved when installing the frameworkG.
For more information about creating a new project, see section 4.

Developer Manual
ver. 1.0.0

pag. 3 of 23

4 Project configuration

4 Project configuration

4.1 Required libraries and instantiation

In order to use the features of Norris frameworkG, two libraries are required for a correct
execution. Specifically, it is required to have an instance of:

• Socket.ioG: an exclusive namespaceG that will be used to send pushG notifica-
tions and update single charts;

• ExpressG: required to create a mountG point for the correct integration of the
frameworkG with the application which uses its features and also to make the
resources available to web requests.

The following example is a correct way to configure a project.

// Express instantiation
var app = require(’express’)();

// Socket.io instantiation on the express instance
var http = require(’http’).createServer(app);
var socket = require(’socket.io’).listen(http);

// Creating namespace for the Norris instance
var nsp = socket.of(’/norris’);

// Norris instantiation
var Norris = require(’norris-rtbi’)(nsp);

4.2 Mount

For a more in-depth explanation of the integration between Norris frameworkG and the
developer application, the next example covers the correct use of a mountG point. The
effects will be explained in the description that follows the example, while every proper
SDKG feature will be described in the section 5.

// Creating Norris objects
var page = new Norris.Page("Page title", { "pageWidth": 1024, "columns": 2});
var barChart = new Norris.BarChart("Bar Chart title", "X Axis name", "Y Axis

name", [1], [[5]]);
page.addGraph(barChart);

// Mounting the Norris object "page" on the express application
app.use(’/norris’, Norris.PageRouter(page));

The last instruction provides a mountG point for the frameworkG, allowing it to create
an internal routingG for its resources, making them available to be obtained via web
requests. Specifically, HTTPG requests to the application URL with the addition of the
mountG point name ("/norris" in the example) will result in the display of an HTMLG

page template containing the graphic representation of the created charts.
The internal routingG is also extended with the possibility of adding the "/raw" key-
word after every resource; any request to this URL returns the raw JSON data of the
respective resource. Being able to access the raw data directly allows them to be used

Developer Manual
ver. 1.0.0

pag. 4 of 23

4 Project configuration

outside of the Norris frameworkG template, for example creating a customized template
or use different graphic libraries for the chart visualization.

4.2.1 PageRouter(page)

Calling the method PageRouter() is required in order to make a certain page available
with ExpressG. The specific page will be the only parameter for this method.
The PageRouter method will create a middlewareG object that has to be included in
the application through the ExpressG method app.use("URL", middlewareObject),
as described in the previous example.
The page will not be available to be displayed if this method is not called
with the specific page parameter.

4.3 Project example

The following code shows a simple and complete example of a Norris project.
After creating the page and adding two charts to it, the application will be started and
the update logic will keep the charts updated.

// Express instantiation
var app = require(’express’)();
// Socket.io instantiation on the express instance
var http = require(’http’).createServer(app);
var socket = require(’socket.io’).listen(http);
// Creating namespace for the Norris instance
var nsp = socket.of(’/Socket’);
// Norris instantiation
var Norris = require(’norris-rtbi’)(nsp);

// Creating Norris objects
var Page = Norris.Page;
var LineChart = Norris.LineChart;
var BarChart = Norris.BarChart;
var PageRouter = Norris.PageRouter;
// Create new page
var page = new Page("First page", {columns:2});

//creating Line Chart with some options
var axisLabel = [1,2,3];
var lineData = [[4,6,5],[7,6,2],[2,4,5],[3,2,1]];
var lineOpt = { series:["Jan", "Feb", "Mar", "Jun"]

, legendPosition: "bottom"
, labelsLimit: 10
};

var myLine = new LineChart("Line Chart title", "X Axis", "Y Axis", axisLabel,
lineData, lineOpt);

//creating Bar Chart with some options
var barData = [[7,8,9],[-1,-2,-3]];
var barOpt = { orientation: "horizontal", valueType: "dollars"};
var myBar = new BarChart("Bar Chart title", "X Axis", "Y Axis", [1,2,3],

barData, barOpt);

Developer Manual
ver. 1.0.0

pag. 5 of 23

4 Project configuration

// add graphs into page
page.addGraph(myLine);
page.addGraph(myBar);

// Mounting the Norris object "page" on the express application
app.use(’/myPage’, PageRouter(page));

// Update function
var label = 4;
setInterval(function() {

var randVal = Math.floor(Math.random()*10);
// insert new random value on new label
myLine.updateStream(label, [randVal, randVal*2, randVal*0.5,

randVal*1.5]);
// updating serie "3" with random value on various label
myLine.updateInPlace(label-1, 3, Math.floor(Math.random()*10));
// update label 2 on serie 1 with random value
myBar.updateInPlace(2,0, Math.floor(Math.random()*10)+1);
label++;

}, 5000);

http.listen(process.env.PORT || 3000);

Developer Manual
ver. 1.0.0

pag. 6 of 23

5 Software development kit

5 Software development kit

5.1 General description

Norris frameworkG exposes to the developer two main entities: pages and charts.
A page is a structure that works as a collection of different types of charts.
There are four types of chart: Bar ChartG, Line ChartG, Map ChartG and TableG.
Every chart has to be included in a page in order to be displayed.

5.2 Page

A Page is a structure that identifies a web page and will contain the page properties
and all the charts that were included in it. This page will be available on-line after it
will be added to a mountG point of an ExpressG middlewareG (see sec. 4.2).

5.2.1 Page(title, options)

This method creates a page with a set title, width and a maximum number of charts
displayed in a row.
The title parameter is mandatory, while the options parameter is optional.

• title: string that represents the web page title;

• options: optional parameter that contains the options for the web page, this
object must have the same structure of the example below.

{ "pageWidth": value
, "columns": value
}

– pageWidth: integer that represents the pixel width of the web page, must
be greater than 800;

– columns: integer that represents the maximum number of charts that will
be displayed in the same row of the web page, the value must range between
1 and 12, both included. If the page contains more charts than the value of
this parameter, the charts will be displayed in more lines.

5.2.2 getPageInfo()

This method, called on a Page object, returns an object containing the page properties
and the contained charts’ information.

5.2.3 addGraph(graph)

This method, called on a Page object, includes a chart into a page. A specific chart
may be included in one or more pages.

5.3 Line Chart

A Line ChartG is a chart type which shows the data set as a series of points linked with
a line.
It is possible to have many data sets and set various parameters, as described next.

Developer Manual
ver. 1.0.0

pag. 7 of 23

5 Software development kit

5.3.1 LineChart(title, xAxisName, yAxisName, labels, data, options)

This method creates a Line Chart type chart. Every parameter is mandatory, except
for the options parameter.

• title: string that represents the chart title;

• xAxisName: string that represents the horizontal axis name;

• yAxisName: string that represents the vertical axis name;

• labels: array of strings that represents the labels of the values in the horizontal
axis;

• data: array that represents the initial data sets, every element of this array has
to be in the form of another array as it represents a single data set and must have
the same length as the labels array;

[[a0, a1, a2, ..., alabel.length−1], [b0, b1, b2, ..., blabel.length−1], [c0, c1, c2, ..., clabel.length−1]]

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure of the example below but doesn’t have to be
complete;

{ "series": []
, "grid": "value"
, "legend": "value"
, "legendPosition": "value"
, "colors": []
, "valueType": []
, "decimals": value
, "labelsLimit": value
}

– series: array of strings that represents the name of each data set, these
values will be displayed in the chart legend. If not left empty, the name
for each data set must be specified. The default value for this option is
automatically generated by Norris;

– grid: boolean parameter that represents the choice of showing (true) or
hiding (false) the chart grid. The default value for this parameter is true;

– legend: boolean parameter that represents the choice of showing (true) or
hiding (false) the chart legend. The default value for this parameter is true;

– legendPosition: string that represents the position of the chart legend, the
allowed values are "right", "left", "top" and "bottom". The default value for
this parameter is "right";

– colors: array of strings that represents the color each data set in the
chart. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF"
or "FFFFFF"). If not left empty, the color for each data set must be speci-
fied. The default value for this option is automatically generated by Norris;

Developer Manual
ver. 1.0.0

pag. 8 of 23

5 Software development kit

– valueType: string that represents the value type of the data in the chart,
the allowed values are "euro", "dollars" and "pounds". The default value for
this parameter doesn’t apply any type;

– decimals: integer that represents the amount of decimal places for the data
in the chart, the value must range between 0 and 6, both included. The
default value for this parameter is 2;

– labelsLimit: integer that represents the maximum amount of labels and
respective data that will be maintained for the chart. If more data is added
past this point, the oldest data will be removed. The default value for this
parameter is 300;

If this method is called with any invalid parameter, an error is thrown and will
terminate the application if not caught.

5.3.2 getChartInfo()

This method, called on a Line ChartG, returns an object containing the chart properties
and its data.

5.3.3 updateInPlace(label, set, newValue)

This method, called on a Line ChartG, updates a single value of the chart data. Every
parameter is mandatory.

• label: string that represents the label of the value that is going to be updated;

• set: integer that represents the index of the data set that is going to be updated,
value must range between 0 and the amount of data sets, with the latter not
included;

• newValue: number that represents the new value for the specific data set in the
specific label;

5.3.4 updateStream(newLabel, newValue)

This method, called on a Line ChartG, updates the chart adding a new label and the
respective new values for each data set. Every parameter is mandatory.

• newLabel: string that represents the label of the new values of each data set;

• newValue: array that contains the new values of each data set. It must contain
one value for each data set;

5.4 Bar Chart

A Bar ChartG is a chart type which shows the data set as a series of horizontal or
vertical bars.
It is possible to have many data sets and set various parameters, as described next.

Developer Manual
ver. 1.0.0

pag. 9 of 23

5 Software development kit

5.4.1 BarChart(title, xAxisName, yAxisName, labels, data, options)

This method creates a Bar ChartG type chart. Every parameter is mandatory, except
for the options parameter.

• title: string that represents the chart title;

• xAxisName: string that represents the horizontal axis name;

• yAxisName: string that represents the vertical axis name;

• labels: array of strings that represents the labels of the values in the horizontal
axis;

• data: array that represents the initial data sets, every element of this array has
to be in the form of another array as it represents a single data set and must have
the same length of the labels array;

[[a0, a1, a2, ..., alabel.length−1], [b0, b1, b2, ..., blabel.length−1], [c0, c1, c2, ..., clabel.length−1]]

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure of the example below but doesn’t have to be
complete;

{ "series": []
, "orientation": "value"
, "grid": "value"
, "legend": "value"
, "legendPosition": "value"
, "colors": []
, "valueType": []
, "decimals": value
}

– series: array of strings that represents the name of each data set, these
values will be displayed in the chart legend. If not left empty, the name
for each data set must be specified. The default value for this option is
automatically generated by Norris;

– orientation: string that represents the orientation of the bars in the chart,
the allowed values are "horizontal" and "vertical". The default value for this
parameter is "vertical";

– grid: boolean parameter that represents the choice of showing (true) or
hiding (false) the chart grid. The default value for this parameter is true;

– legend: boolean parameter that represents the choice of showing (true) or
hiding (false) the chart legend. The default value for this parameter is true;

– legendPosition: string that represents the position of the chart legend, the
allowed values are "right", "left", "top" and "bottom". The default value for
this parameter is "right". If the orientation parameter is set to "horizontal",
legendPosition can’t be set to "left";

Developer Manual
ver. 1.0.0

pag. 10 of 23

5 Software development kit

– colors: array of strings that represents the color each data set in the
chart. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF"
or "FFFFFF"). If not left empty, the color for each data set must be speci-
fied. The default value for this option is automatically generated by Norris;

– valueType: string that represents the value type of the data in the chart,
the allowed values are "euro", "dollars" and "pounds". The default value for
this parameter doesn’t apply any type;

– decimals: integer that represents the amount of decimal places for the data
in the chart, the value must range between 0 and 6, both included. The
default value for this parameter is 2;

If this method is called with any invalid parameter, an error is thrown and will
terminate the application if not caught.

5.4.2 getChartInfo()

This method, called on a Bar ChartG, returns an object containing the chart properties
and its data.

5.4.3 updateInPlace(label, set, newValue)

This method, called on a Bar ChartG, updates a single value of the chart data. Every
parameter is mandatory.

• label: string that represents the label of the value that is going to be updated;

• set: integer that represents the index of the data set that is going to be updated,
value must range between 0 and the amount of data sets, with the latter not
included;

• newValue: number that represents the new value for the specific data set in the
specific label;

5.5 Map Chart

A Map ChartG is a chart type which shows the information inside a map provided by
Google Maps.
It is possible to highlight paths on the map, add markersG to it and set various param-
eters as described next.

5.5.1 MapChart(title, paths, points, centerLatitude, centerLongitude, op-
tions)

This method creates a Map Chart type chart. Every parameter is mandatory, except
for the options parameter.

• title: string that represents the chart title;

• paths: array that represents the paths on the map, every element of this array
has to be in the form of another array as it represents a single path composed
by a series of points of interest. Each of those point is identified with an array
of two elements, representing respectively the latitude and longitude coordinates.

Developer Manual
ver. 1.0.0

pag. 11 of 23

5 Software development kit

The path will then be calculated by Google Maps APIG following the points of
interest order.
In the following example, the "a" series represents the first path while the series
"b" represents the second one.

[[[xa,0, ya,0], [xa,1, ya,1]], [[xb,0, yb,0], [xb,1, yb,1], [xb,2, yb,2]]]

It is possible to create a Map ChartG with no path providing an empty array to
the constructor function, but it will not be possible to add any path afterwards;

• points: array that represent the set of markers to add to the map. Every point
must have the following structure:

[{latitude : x0, longitude : y0, id : ”point−1”}, {latitude : x1, longitude : y1, id : ”point−2”}]

The "id" parameter must be unique compared to the other points id.
It is possible to create a Map ChartG with no markers providing an empty array
to the constructor function and it will be possible to add markers afterwards with
the movie type update;

• centerLatitude: number that represents the latitude of the map center, the
value must range between -90 and 90;

• centerLongitude: number that represents the longitude of the map center, the
value must range between -180 and 180:

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure as the example below but doesn’t have to be
complete;

{ "zoom": 0
, "legend": "value"
, "mapLegendPosition": "value"
, "colors": []
, "pathName": []
, "pathMode": []
}

– zoom: integer that represents the initial zoom level of the map, the value
must range between 0 and 14, both included. The default value for this
parameter is 4;

– legend: boolean parameter that represents the choice of showing (true) or
hiding (false) the chart legend. The default value for this parameter is true;

– mapLegendPosition: string that represents the position of the map leg-
end, the allowed values are "top-right", "top-left", "bottom-right" and "bottom-
left". The default value for this parameter is "top-right";

– colors: array of strings that represents the color of each path in the map.
Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF").
If not left empty, the color for each data set must be specified. The default
value for this option is automatically generated by Norris;

Developer Manual
ver. 1.0.0

pag. 12 of 23

5 Software development kit

– pathName: array of strings that represents the name of each path, these
values will be displayed in the map legend. If not left empty, the name for
each path must be specified. The default value for this option is automati-
cally generated by Norris;

– pathMode: string that represents the travel mode for the paths, the allowed
values are "walking", "driving", "bicycling" and "transit". Specifically:
∗ walking: travel walking;
∗ driving: travel by car;
∗ bicycling: travel by bicycle;
∗ transit: travel by public transport.

This allows to calculate the paths specifically for different needs. The default
value for this parameter is "driving".

If this method is called with any invalid parameter, an error is thrown and will
terminate the application if not caught.

5.5.2 getChartInfo()

This method, called on a Map ChartG, returns an object containing the chart properties
and its data.

5.5.3 updateInPlace(point, latitude, longitude)

This method, called on a Map ChartG, updates the position of a single existing markerG

on the map. Every parameter is mandatory.

• point: string that represents the id of an existing marker that is going to be
updated;

• latitude: number that represents the new latitude of the markerG, the value
must range between -90 and 90;

• longitude: number that represents the new longitude of the markerG, the value
must range between -180 and 180.

5.5.4 updateMovie(newPositions)

This method, called on a Map ChartG, updates the position of every markerG on the
map at the same time. The newPositions parameter is mandatory.

• newPosition: array that represents the markers that the map will contain after
the update, every element of this array represents a single markerG and must
have the following structure:

[{}, {}, {},]

– id: unique string that identifies the markerG on the map;
– latitude: number that represents the new latitude of the markerG, the value

must range between -90 and 90;

Developer Manual
ver. 1.0.0

pag. 13 of 23

5 Software development kit

– longitude: number that represents the new longitude of the markerG, the
value must range between -180 and 180.

{ id: "name"
, latitude: value
, longitude: value
}

If one of the markersG already exists on the map, its position will be changed
accordingly to respect the new coordinates; if it doesn’t, a new markerG will be
added to the map. Any previously existing markerG that does not appear in this
array will be removed from the map.

5.6 Table

A TableG is a chart type which shows the information inside a table.
It is possible to set various parameters as described next.

5.6.1 Table(title, headers, data, options)

This method creates a Table type chart. Every parameter is mandatory, except for the
options parameter.

• title: string that represents the chart title;

• headers: array of strings that represents the title of each column header of the
table. The amount of headers will also determine the amount of columns in the
table;

• data: array that represents the initial data sets, every element of this array has
to be in the form of another array as it represents a single row and must have the
same length of the headers array;

[[x0,0, y0,1], [x1,0, y1,1], [x2,0, y2,1]]

It is possible to create a TableG with no data providing an empty array to the
constructor function and it will be possible to add rows afterwards with the stream
type update;

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure as the example below but doesn’t have to be
complete;

{ "insertPosition": "value"
, "orderBy":{ "column": 0

, "order": "value"
}

, "displayedLines": int
, "border": "value"
, "colorColumn" : []
, "colorRow" : []
, "colorCell" : []

Developer Manual
ver. 1.0.0

pag. 14 of 23

5 Software development kit

, "colorColumnFont" : []
, "colorRowFont" : []
, "colorFont" : []
, "format": []
, "rowsLimit": 300
};

– insertPosition: string that represents the position where the new row will
be added to the table after a stream type update, the allowed values are
"top" and "bottom". The default value for this parameter is "bottom";

– orderBy: object that represents the order of the table elements. This object
must have the same structure of the example below and, if not left empty,
every parameter must be defined with a valid value;

{ "column": value
, "order": "value"
}

∗ column: integer that represents the column on which the order will be
applied. The value must range between 0 and the amount of columns,
with zero included;
∗ order: string that represents the type of ordering to apply on the col-
umn, the allowed values are "ascending" and "descending".

– displayedLines: integer that represents the maximum amount of rows that
will be displayed at the same time, the value must be greater than 0;

– border: boolean parameter that represents the choice of showing (true) or
hiding (false) the table borders. The default value for this parameter is true;
colorColumn: array that represents the background color of one or more
column in the table. Each element of the array represents a single column
in the form of a two cells array that contains the column index and the color
string. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF").

[[columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorRow: array that represents the background color of one or more rows
in the table. Each element of the array represents a single row in the form
of a two cells array that contains the row index and the color string. Only
HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF").

[[rowIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorCell: array that represents the background color of one or more cells in
the table. Each element of the array represents a single cell in the form of a
three cells array that contains the row index, the column index and the color

Developer Manual
ver. 1.0.0

pag. 15 of 23

5 Software development kit

string. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF").

[[rowIndex, columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorColumnFont: array that represents the font color of one or more
column in the table. Each element of the array represents a single column
in the form of a two cells array that contains the column index and the color
string. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF").

[[columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorRowFont: array that represents the font color of one or more row in
the table. Each element of the array represents a single row in the form
of a two cells array that contains the row index and the color string. Only
HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF").

[[rowIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorFont: array that represents the font color of one or more cells in the
table. Each element of the array represents a single cell in the form of a
three cells array that contains the row index, the column index and the color
string. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF").

[[rowIndex, columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– format: array that represents the data format of the table data. Each
element of the array represents the data format of a single column and must
have the same structure of the example below (only the column parameter
is mandatory);

{ "column": value
, "valueType": "value"
, "decimals": value
}

∗ column: integer that represents the column on which the data format
will be applied. The value must range between 0 and the amount of
columns, with zero included;
∗ valueType: string that represents the value type of the data in the
column, the allowed values are "euro", "dollars" and "pounds". The
default value for this parameter doesn’t apply any type;

Developer Manual
ver. 1.0.0

pag. 16 of 23

5 Software development kit

∗ decimals: integer that represents the amount of decimal places for
the data in the column, the value must range between 0 and 6, both
included. The default value for this parameter is 2.

– rowsLimit: integer that represents the maximum amount of rows that will
be maintained for the table. If more data is added past this point, the oldest
data will be removed. The default value for this parameter is 300.

If this method is called with any invalid parameter, an error is thrown and will
terminate the application if not caught.

5.6.2 getChartInfo()

This method, called on a TableG chart, returns an object containing the chart properties
and its data.

5.6.3 updateInPlace(row, column, newValue, options)

This method, called on a TableG, updates a single value of the table data. Every
parameter is mandatory, except for the options parameter.

• row: integer that represents the row on which the update will be applied. The
value must range between 0 and the amount of rows, with zero included;

• column: integer that represents the column on which the update will be applied.
The value must range between 0 and the amount of columns, with zero included;

• newValue: value that represents the new value of the cell that will be updated;

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure as the example below but doesn’t have to be
complete;

{ "colorFont": "value"
, "colorCell": "value"
}

– colorFont: string that represents the new font color of the cell. Only
HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF");

– colorCell: string that represents the new background color of the cell. Only
HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF").

5.6.4 updateStream(data, options)

This method, called on a TableG, updates the chart adding a new row to the table.
The data parameter is mandatory, while the option parameter is optional.

• data: array that represents the new row data, it may contain a different amount
of element compared to the headers of the table. If the row contains more cells,
the extra cells will be ignored. If the row contains less cells, the missing cells will
remain empty;

Developer Manual
ver. 1.0.0

pag. 17 of 23

5 Software development kit

• options: optional parameter that contains the options for the chart, this ob-
ject must have the same structure as the example below but doesn’t have to be
complete;

{ "colorRow": "value"
, "colorRowFont": "value"
, "colorCell": []
, "colorFont": []
};

– colorRow: string that represents the new background color of the row
cells. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF");

– colorRowFont: string that represents the new font color of the row cells.
Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF");

– colorCell: array that represents the background color of one or more cells
of the new row. Each element of the array represents a single column in
the form of a two cells array that contains the column index and the color
string. Only HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or
"FFFFFF").

[[columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris;

– colorFont: array that represents the font color of one or more cells in the
table. Each element of the array represents a single column in the form of
a two cells array that contains the column index and the color string. Only
HTMLG hexadecimal values are accepted (e.g. "#FFFFFF" or "FFFFFF").

[[columnIndex, ""], ...]

If left completely or partially empty, the default value for this option is
automatically set by Norris.

Developer Manual
ver. 1.0.0

pag. 18 of 23

A Glossary

A Glossary

A
API (Application Programming Interface)
An API is a set of routines, protocols, and tools for building software applications.

B
Bar Chart
A bar chart is a chart that presents grouped data with rectangular bars with lengths
proportional to the values that they represent. The bars can be plotted vertically or
horizontally.

C
Client
A client is a piece of computer hardware or software that accesses a service made avail-
able by a serverG. The serverG is often (but not always) on another computer system,
in which case the client accesses the service by way of a network.

E
Express
Express is a Node.jsG web application frameworkG, designed for building single-page,
multi-page, and hybrid web applications

F
Framework
A framework is an abstraction in which software providing generic functionality can be
selectively changed by additional user-written code, thus providing application-specific
software.

H
HTML (HyperText Markup Language)
HTML is the standard markup language used to create web pages.

Developer Manual
ver. 1.0.0

pag. 19 of 23

A Glossary

HTTP (HyperText Transfer Protocol)
The Hypertext Transfer Protocol (HTTP) is an application protocol for distributed,
collaborative, hypermedia information systems. HTTP is the foundation of data com-
munication for the World Wide Web.

J
JSON (JavaScript Object Notation)
JSON is an open standard format that uses human-readable text to transmit data ob-
jects consisting of attribute–value pairs. It is used primarily to transmit data between
a serverG and web application, as an alternative to XMLG.

L
Line Chart
is a type of chart which displays information as a series of data points called ’markers’
connected by straight line segments. It is a basic type of chart common in many fields.
A line chart is often used to visualize a trend in data over intervals of time – a time
series – thus the line is often drawn chronologically.

M
Map Chart
A map chart is a map in which some thematic mapping variable is substituted for land
area or distance. The geometry or space of the map is distorted in order to convey the
information of this alternate variable.

Marker
A marker is a symbol used in a Map ChartG to show a specific point on the map.

Middleware
Middleware is a computer software that provides services to software applications be-
yond those available from the operating system. It makes it easier for software devel-
opers to perform communication and input/output, so they can focus on the specific
purpose of their application.

Developer Manual
ver. 1.0.0

pag. 20 of 23

A Glossary

Mount
In Unix-like operative systems, the mount command instructs the operating system
that a file system is ready to use, and associates it with a particular point in the overall
file system hierarchy (its mount point) and sets options relating to its access. Mount-
ing makes file systems, files, directories, devices and special files available for use and
available to the user.
In Norris, mount is intended as making a Page resource available to the final user
through a specifi URL (its mount point).

N
Namespace
A namespace is a set of named symbols, usually variables. Names or identifiers are keys
allowing access to symbol values. Namespaces provide a level of direction to specific
identifiers, thus making it possible to distinguish between identical identifiers.
In computer programming, namespaces are typically employed for the purpose of group-
ing symbols and identifiers around a particular behavior. In Norris, the namespace is
used to avoid conflicts between the developer’s main instance of socket.io and the one
used by Norris.

Node.js
Node.js is an open source, cross-platform runtime environment for serverG-side and
networking applications. Node.js applications are written in JavaScript. Node.js pro-
vides an event-driven architecture and a non-blocking I/O APIG that optimizes an
application’s throughput and scalability. These technologies are commonly used for
real-time web applications.

npm
It is the default package manager for Node.jsG. It manages dependencies for an appli-
cation and allows users to install Node.js applications that are available on the npm
registry.

P
Push
Push, or serverG push, describes a style of Internet-based communication where the
request for a given transaction is initiated by the publisher or central serverG. It is
contrasted with pull/get, where the request for the transmission of information is ini-
tiated by the receiver or clientG.

Developer Manual
ver. 1.0.0

pag. 21 of 23

A Glossary

R
Routing
Routing refers to the definition of end points to an application and how it responds to
client requests. A route is a combination of a URI, a HTTP request method (GET in
Norris) and one or more handlers for the endpoint.

S
SDK
An SDK is a set of software development tools that allows the creation of applications
for a certain software package, software framework, hardware platform, computer sys-
tem, video game console, operating system, or similar development platform.

Server
A server is a running instance of an application capable of accepting requests from the
clientG and giving responses accordingly. Servers can run on any computer including
dedicated computers.

Socket.io
Socket.io is a JavaScript library for realtime web applications. It enables realtime,
bi-directional communication between web clientsG and serverG. It has two parts: a
clientG-side library that runs in the browser, and a serverG-side library for node.jsG.
Socket.io primarily uses the WebSocket protocol.

T
Table
A table is a means of arranging data in rows and columns.

X
XML (Extensible Markup Language)
XML is a markup language that defines a set of rules for encoding documents in a
format which is both human-readable and machine-readable.

Developer Manual
ver. 1.0.0

pag. 22 of 23

B Contacts

B Contacts
You can report any problem or bug occurrence found during the installation or the use
of Norris frameworkG opening a GitHub issue at the following URL:

https://github.com/FlameTech/Norris-rtbi/issues

Logging in to the site is required and after displaying the following page, simply press
the button "New issue" to create a report.

Figure 1: Issue section

Once the report is compiled, press the button “Submit new issue” to submit it to us.

Figure 2: Issue creation

Developer Manual
ver. 1.0.0

pag. 23 of 23

https://github.com/FlameTech/Norris-rtbi/issues

	Introduction
	Document purpose
	Product purpose

	System requirements
	Installation
	FrameworkG installation

	Project configuration
	Required libraries and instantiation
	Mount
	PageRouter(page)

	Project example

	Software development kit
	General description
	Page
	Page(title, options)
	getPageInfo()
	addGraph(graph)

	Line Chart
	LineChart(title, xAxisName, yAxisName, labels, data, options)
	getChartInfo()
	updateInPlace(label, set, newValue)
	updateStream(newLabel, newValue)

	Bar Chart
	BarChart(title, xAxisName, yAxisName, labels, data, options)
	getChartInfo()
	updateInPlace(label, set, newValue)

	Map Chart
	MapChart(title, paths, points, centerLatitude, centerLongitude, options)
	getChartInfo()
	updateInPlace(point, latitude, longitude)
	updateMovie(newPositions)

	Table
	Table(title, headers, data, options)
	getChartInfo()
	updateInPlace(row, column, newValue, options)
	updateStream(data, options)

	Glossary
	Contacts

